Not very easy to distinguish between them, here I just give some useful link to this two kinds of model.
以前对这两个概念非常模糊,今天从网上找到了关于这两个概念的两种风格的解释,比较一下!
第一种风格:
第一种风格:
For a data sample: x and it class lable:,y,
要检测图像中的淋巴结,有很多positive,很多的negetive。
Discrimitive model: p(y|x), 给定x,算y。
要检测图像中的淋巴结,有很多positive,很多的negetive。
Discrimitive model: p(y|x), 给定x,算y。
Generative model:和 discrimitive model 的区别:
Generative model focus
在自己的inclass 本身,不care 到底 decision boundary 在哪。
Generative model 实际上带的information 要比discrimitive model rich,
因为假设有generative model, 两类的,就完全得到了p(x|y),而discrimitive model 只care
decision boundary。这里说的generative model 和 discrimitive
model,在行业里,这个说法是通用的。
由Generative model 可以得到 discrimitive model, 但由discrimitive model 得不到
generative model。因为需要用到P(x), 如果只是label 的话,p(y)很简单,但为什么不能直接用Generative
model 呢?
Generative model focus
在自己的inclass 本身,不care 到底 decision boundary 在哪。
Generative model 实际上带的information 要比discrimitive model rich,
因为假设有generative model, 两类的,就完全得到了p(x|y),而discrimitive model 只care
decision boundary。这里说的generative model 和 discrimitive
model,在行业里,这个说法是通用的。
由Generative model 可以得到 discrimitive model, 但由discrimitive model 得不到
generative model。因为需要用到P(x), 如果只是label 的话,p(y)很简单,但为什么不能直接用Generative
model 呢?
优缺
Discrimitive model: 相当于在图像上scan 一下,detection, 用一个path, 在不同的scale
上search, 每一词看probability, 在SVM上是positive 还是negetive。
Discrimitive 比较easy to learn, 给出正负例,给出lable, focus on discrimitive
model marginal distribution。 某种意义上,比generativemodel 要简单,但power 是
limited, 可以告诉你的时1还是2,但没有办法把整个场景描述出来。
P(x|y) P(y)
当一个分类,没有negetive,研究single class,比discrimitive model flex 多,learning 和
computing 要比 discrimitive model 复杂得多
上search, 每一词看probability, 在SVM上是positive 还是negetive。
Discrimitive 比较easy to learn, 给出正负例,给出lable, focus on discrimitive
model marginal distribution。 某种意义上,比generativemodel 要简单,但power 是
limited, 可以告诉你的时1还是2,但没有办法把整个场景描述出来。
P(x|y) P(y)
当一个分类,没有negetive,研究single class,比discrimitive model flex 多,learning 和
computing 要比 discrimitive model 复杂得多
第二种解释
Discriminative Model是判别模型,又可以称为条件模型,或条件概率模型。
Generative Model是生成模型,又叫产生式模型。
Generative Model是生成模型,又叫产生式模型。
二者的本质区别是
discriminative model 估计的是条件概率分布(conditional
distribution)p(class|context)
generative model 估计的是联合概率分布(joint probability distribution)p()
常见的Generative Model主要有:
– Gaussians, Naive Bayes, Mixtures of multinomials
– Mixtures of Gaussians, Mixtures of experts, HMMs
– Sigmoidal belief networks, Bayesian networks
– Markov random fields
discriminative model 估计的是条件概率分布(conditional
distribution)p(class|context)
generative model 估计的是联合概率分布(joint probability distribution)p()
常见的Generative Model主要有:
– Gaussians, Naive Bayes, Mixtures of multinomials
– Mixtures of Gaussians, Mixtures of experts, HMMs
– Sigmoidal belief networks, Bayesian networks
– Markov random fields
常见的Discriminative Model主要有:
– logistic regression
– SVMs
– traditional neural networks
– Nearest neighbor
– logistic regression
– SVMs
– traditional neural networks
– Nearest neighbor
Successes of Generative Methods:
NLP
– Traditional rule-based or Boolean logic systems
Dialog and Lexis-Nexis) are giving way to statistical
approaches (Markov models and stochastic context
grammars)
Medical Diagnosis
– QMR knowledge base, initially a heuristic expert
systems for reasoning about diseases and symptoms
been augmented with decision theoretic formulation
Genomics and Bioinformatics
– Sequences represented as generative HMMs
– Traditional rule-based or Boolean logic systems
Dialog and Lexis-Nexis) are giving way to statistical
approaches (Markov models and stochastic context
grammars)
Medical Diagnosis
– QMR knowledge base, initially a heuristic expert
systems for reasoning about diseases and symptoms
been augmented with decision theoretic formulation
Genomics and Bioinformatics
– Sequences represented as generative HMMs
主要应用Discriminative Model:
Image and document classification
Biosequence analysis
Time series prediction
Biosequence analysis
Time series prediction
Discriminative Model缺点:
Lack elegance of generative
– Priors, structure, uncertainty
Alternative notions of penalty functions,
regularization, kernel functions
Lack elegance of generative
– Priors, structure, uncertainty
Alternative notions of penalty functions,
regularization, kernel functions
Feel like black-boxes
– Relationships between variables are not explicit
and visualizable
– Relationships between variables are not explicit
and visualizable
Bridging Generative and Discriminative:
Can performance of SVMs be combined
elegantly with flexible Bayesian statistics?
Can performance of SVMs be combined
elegantly with flexible Bayesian statistics?
Maximum Entropy Discrimination marries
both methods
– Solve over a distribution of parameters (a
distribution over solutions)
both methods
– Solve over a distribution of parameters (a
distribution over solutions)
0 Comments:
Post a Comment